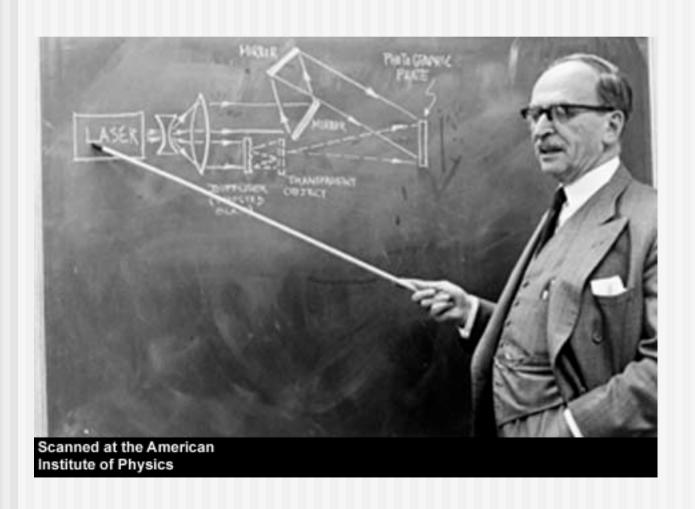
holografia

Paulo Acioly Marques dos Santos

Laboratório de Óptica Não Linear & Aplicada

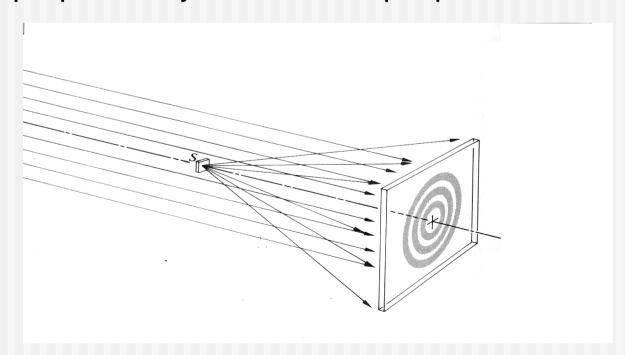
perguntas

- Quais os dois princípios físicos fundamentais envolvidos na holografia?
- Afinal, de que consiste essencialmente um holograma?
- Descreva resumidamente como se obtem a imagem a partir do holograma.

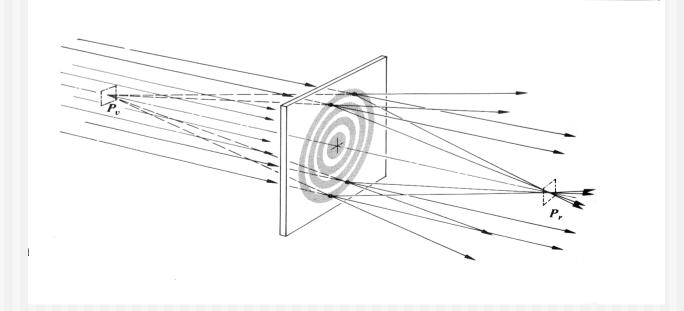

Dennis Gabor

Prêmio Nobel em Física 1971

...for his three-dimensional lenless method of photography (holography)...

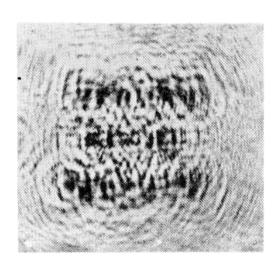

Holografia = grafia do todo (holos = todo)

Dennis Gabor


geração do holograma de Gabor

gravação de um "holograma em linha" ("on axis") Luz incide sobre um objeto e forma-se no anteparo um padra de Interferência entre o feixe que difrata no pequeno objeto e o feixe que passa sem desvio.

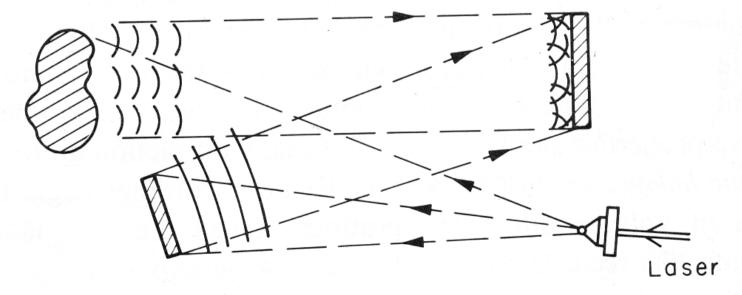
leitura do holograma de Gabor


Iluminação da placa por uma onda plana de leitura retira-se o pequeno objeto e ilumina-s a placa de filme ond foi gravado o padrão de interferência, então a placa ira difratar como se fosse o objeto, e o observador vê sua imagem com a sensação de tridimensionalidade

resultado de um holograma

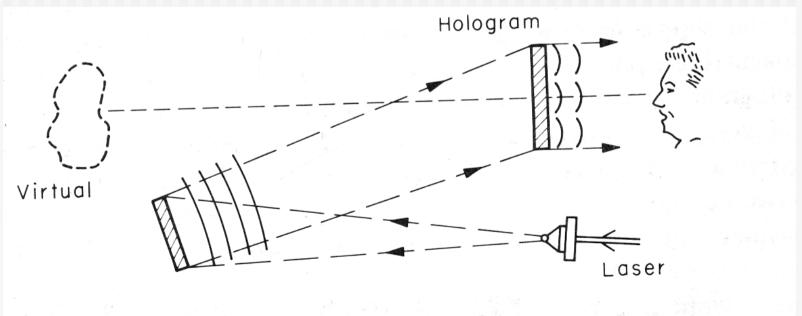
(D.Gabor, *Research* 4,107(1951)

objeto holograma

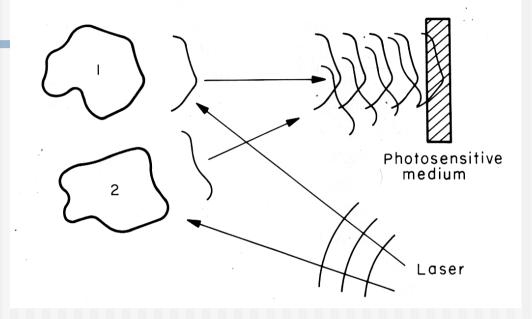

imagem

holograma fora de linha

(off-axis hologram)


■ E.N.Leith and J.Upatnieks, (*J.Opt.Soc.Am.52,1377(1963)*)

—Com o uso de laser propuseram um esquema de holografia que é o mesmo utilizado para obteção dos hologramas observados no laboratório. O processo físico é o mesmo do esquema de Gabor.

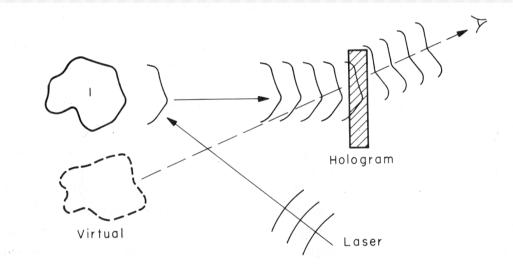


holograma fora de linha

 Reprodução da imagem virtual – ilumina-se o holograma após revelação com o feixe que não foi desviado, a luz irá difratar no holograma como se fôsse o objeto.

descrição analítica

Ilumina-se o filme com o padrão de interferência I e **t** será a representação matemática do holograma gravado no filme.

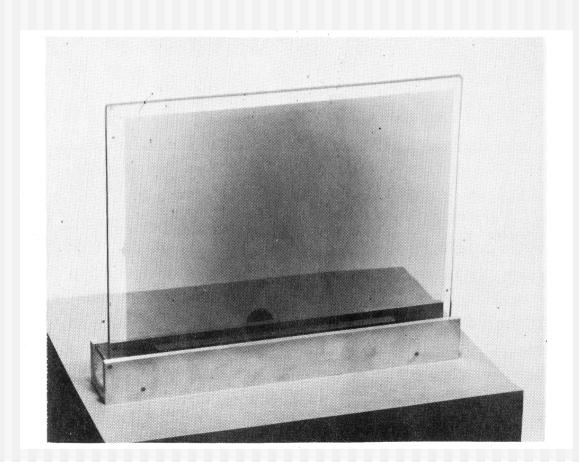

$$I = (a_1 + a_2)(a_1 + a_2)^*$$

$$t = \frac{amplitude \ transmitida}{amplitude \ incidente} = t_0 - kI$$

reconstrução da imagem

Geração do padrão de interferência I no filme holográfico

$$I = a_1 a_1^* + a_2 a_2^* + a_1 a_2^* + a_1^* a_2$$
$$= I_1 + I_2 + a_1 a_2^* + a_1^* a_2$$



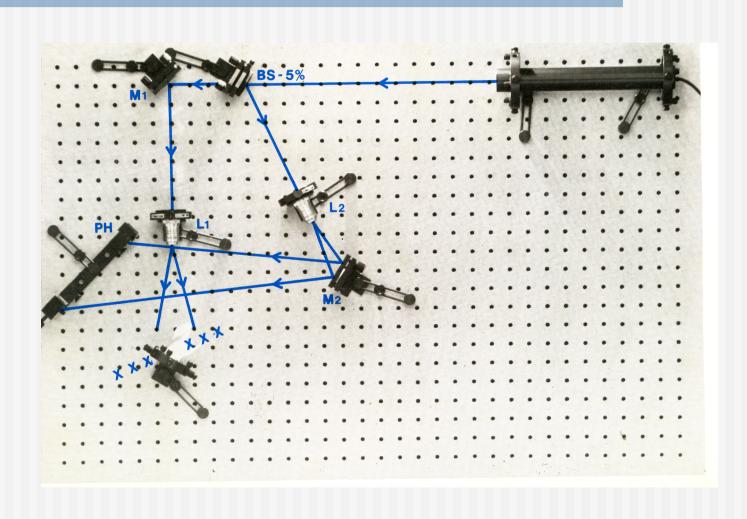
$$w \propto a_1 I = a_1 (I_1 + I_2) + a_1 a_1 a_2^* + I_1 a_2$$

Ou seja, ilumina-se com o feixe de a_1 e obtem-se a imagem do objeto 2 com intensidade I_1a_2 para o observador !!!!

hologramas

Placa holográfica após processamento

Gabor & um holograma



placas e filmes holográficos

TABLE II
Photographic Materials

Material	Substrate	Usable thickness (µm)	Recording wavelength range	Recording sensitivity ^a (J/cm ²)	Limiting resolution (c/mm)	Reference
Kodak 649F	Estar film and plate	6	Panchromatic	~8× 10 ⁻⁵	>3000	Pennington (1971)
		17				Eastman Kodak Co. (19
Agfa 8E70	Plate	6	Panchromatic ^b	2×10^{-5}	3000	Pennington (1971)
Agfa 8E75	Plate	6	Panchromatic ^c	2×10^{-5}	>3000	Pennington (1971) Agfa Gevaert
Kodak 131	Plate	9	Panchromatic	$\sim 2.4 \times 10^{-6}$	~2500	Eastman Kodak Co. (19
Kodak SO-253	Estar film	9	Panchromatic	$\sim 2.4 \times 10^{-6}$	~2500	Eastman Kodak Co. (19
Agfa 10E70	Acetate film and plate	6	Panchromatic ^b	5× 10 ⁻⁶	1500	Pennington (1971)
Agfa 10E75	Plate	6	Panchromatic ^c	5× 10 ⁻⁶	~2500	Pennington (1971) - Agfa Gevaert
Kodak 649GH	Estar film	7	Orthochromatic	$\sim 9.5 \times 10^{-5}$	>3000	Pennington (1971)
Kodak SO-343	Estar film (thick base)	7	Orthochromatic	$\sim 9.5 \times 10^{-5}$	>3000	Eastman Kodak Co. (19
Kodak 1A	Plate	6	Orthochromatic	$\sim 9.5 \times 10^{-5}$	>3000	Eastman Kodak Co. (19
Kodak 2A	Plate	6	Orthochromatic	$\sim 2.1 \times 10^{-4}$	>3000	Eastman Kodak Co. (19
Agfa 8E56	_	6	Orthochromatic ^d	~4× 10 ⁻⁵	>3000	Pennington (1971) Agfa Gevaert

montagem holográfica

bibliografia

Optical Holography, Academic Press, 2ed
 Collier, Burckhardt and Lin

Optics, Addison Weley, 3ed Hecht

Fundamentals of Optics, McGraw Hill, 4ed Jenkins and White